
28 The Delphi Magazine Issue 66

Custom Shell Verbs Using DDE
by Brian Long

This is another in the occasional
series of articles featuring

questions sent to The Delphi Clinic
which warrant an answer too long
and involved for the normal
column. The relevant reader’s
question was:

I have been trying for a while
now to set up an (admittedly old-
fashioned) DDE conversation
between Windows Explorer and my
application. I am trying to use
Explorer’s File Types dialog page
(from the View | Options... menu
item) to add a DDE handler for a
custom file extension. However, I
can’t get it to work and I cannot find
any examples that show how to use
the DDE components.

The core problem is that I want to
double-click a file with my extension
and open it into my application, and
maybe add a right-click menu item
for printing like Microsoft Word does
with .DOC files (which I notice it
does using DDE). Any suggestions?

My first reaction as I read this
question was: ‘DDE? No one uses
that any more, do they? Surely
there’s a better solution to what-
ever the problem is...’ However, by
the time I had finished reading the
question, I had changed my atti-
tude and decided this is a great
question.

The currently fashionable way
to add items to a file’s context
menu in Windows Explorer is to
write a shell extension object. We
have had various articles about
COM shell extensions in past
issues of The Delphi Magazine (for
example, Dave Jewell’s article from
Issue 15, which was superseded by
a later one in Issue 30). There is
also an example shell extension
COM object in the ContMenu.dpr
project in Delphi’s Demos\
ActiveX\ShellExt directory (Delphi
4 and later).

Whilst this is all fine, it strikes me
that writing a shell extension
seems to be rather more involved
than writing a DDE handler (often
called a DDE server). Implementing

all those interfaces in order to get a
menu item is an awful lot of work,
and then you pass a variety of com-
mand lines to the application. If
you want documents opened into a
running copy of the program, if it is
present, you have to invent some
clever scheme where the freshly
invoked copy communicates the
requested document name to the
original copy.

Also, if massive, commercially
successful, applications such as
Microsoft Word and Excel are
happy to use DDE to implement
their Explorer context menu items,
there is no reason why we should
shy away from using it too. So let’s
get started.

How Does DDE Work?
Firstly, a quick overview of DDE as
it relates to this problem (which
means that I’ll be leaving out any
DDE stuff that has no bearing on
this question). DDE is a means
of communicating information
between two consenting applica-
tions. The application that initiates
this communication (or DDE con-
versation) is called the DDE client,
and the DDE client wants some-
thing. The other application in the
conversation is the DDE server,
and it has something to offer, in
this case one or more ways of
processing a file.

To establish the communica-
tion, the DDE client must know
which DDE service it needs to

communicate with. Each DDE
server implements a DDE service,
and the service often has the same
name as the executable’s base
name. In fact, a Delphi DDE server
makes sure the DDE service
defaults to the executable name
(although I outlined how this
could be changed way back in
February 1996, in the Service Not
Good Enough entry from The
Delphi Clinic in Issue 6).
Programmatically, a DDE server
could report its own DDE service
by displaying ddeMgr.AppName
(ddeMgr is defined in the DDEMan
unit).

When trying to establish the
conversation, the DDE client will
first see if the service is already
available (meaning the DDE server
is running) and if not will launch
the DDE server to get the service.
Within any DDE service, the DDE
server implements one or more
topics (you can think of them as
different DDE topics of conversa-
tion). Microsoft recommend that
you implement a System topic, but
this is up to you.

The client must choose an
appropriate topic, and can then
execute macros within that topic.
A macro is just a command formed
as a string of characters. The DDE
server will try and interpret this
macro in order to execute some

➤ Figure 1: The settings for
opening a Word document.

February 2001 The Delphi Magazine 29

appropriate code. Other DDE serv-
ers may also have many data items
within each topic that can be
linked to, but that is outside the
scope of this article.

Our goal is to set up a file associ-
ation with some custom verbs
(commands on the Windows
Explorer context menu), each of
which will execute a DDE macro
within a specified topic in a speci-
fied service, implemented by a
Delphi application.

The ultimate goal is to have such
an application that can be installed
and will have details of its file asso-
ciation set up during installation,
but let’s not get ahead of ourselves.
For now, let’s look at how to manu-
ally set up a file association that
describes supported DDE macros.

File Associations And DDE
The best thing to do to start with is
to look at an existing file associa-
tion and see what it has set. From a
copy of Windows Explorer, drop
down the View menu and choose
either Options... or Folder
Options..., depending which is
available. Select the File Types
page, scroll down the list of
registered file types and locate
Microsoft Word Document.

Press the Edit... button to see
what settings it has and you will
see there are several actions listed.
The default one is in bold (Open)
and if you select it and press
Edit... you can see the settings for
it (see Figure 1).

These settings state
that when a .DOC file
needs to be opened,
WinWord.exe (which is
specified with a full path)
will be used to do the job.
The checkbox says that a
DDE conversation will
cause the file to be
opened, rather than
simply passing the file
name on the command-
line.

Taking the DDE group box fields
out of order, the second one,
marked Application:, specifies the
DDE service. If you leave this field
blank, it assumes the service is the
application name (from the Appli-
cation used to perform action:
field above) without the path or
extension.

The fourth field specifies the
DDE topic which, if left blank, is
assumed to be System.

The first field in the group
contains the DDE macro (referred
to as a DDE message) that will be
executed to perform the action (of
opening the document in this
case). In the message, the string %1
is substituted by Explorer (or by
the ShellExecute and ShellExec-
uteEx APIs, which actually do the
work with file associations) for the

selected file.
The macro may potentially

be made up of multiple individ-
ual commands to the program
and there is a convention
where each command looks
like a pseudo-C function call
and is surrounded by square
brackets. For example, Figure
1 shows that Word under-
stands a FileOpen command in
the DDE message that takes a
file name in double quotes.

It should be stressed that
this is just a convention, not a
rule, despite the context help

for these edit boxes suggesting the
general syntax is fixed (see Figure
2). The DDE macro format is
entirely up to you, as your installa-
tion will set up all these details (so
the user won’t have to worry about
them) and it will eventually be
down to your application code to
parse the macro and get the appro-
priate information out. In fact, as
Figure 2 shows, the suggested DDE
macro command for opening a file
is open, but Word uses FileOpen,
which is instantly inconsistent.

The third and final field allows
you to specify a different DDE
macro to execute in the case where
the DDE server is not already run-
ning. For example, the normal
macro used by Word for a print
verb is a set of three commands:
FileOpen, FilePrint and DocClose.
These commands open the speci-
fied document, print it and close
the document leaving Word open.
However, the DDE Application Not
Running: field uses these slightly
different commands: FileOpen,
FilePrint and FileExit. These
open the document, print it and
then terminate the Word session.
If you leave the field blank, the
macro from the DDE Message: field
will be used.

Making A DDE Server
Now we know the underlying DDE
principles, let’s start work on an
application that can act as a DDE
server. Make a new project and
save it (the sample project on the
disk is called FileAssoc.dpr).

➤ Figure 2: Windows
suggesting how
to write DDE
messages.

➤ Figure 3: Setting up a file
association.

30 The Delphi Magazine Issue 66

Unless we change it, this means the
application’s DDE service will be
FileAssoc.

To set up a DDE topic, all you
need to do is drop a TDdeServerConv
component on the form from the
System page of the Component
Palette. If you prefer, you can make
a data module and drop the DDE
component there to save
cluttering up your form.

The name of the component will
determine the topic name, so, to
make a System topic, set the compo-
nent’s name to System. The topic
must be able to support macro exe-
cution, so we need to make an
OnExecuteMacro event handler for it.
The event handler is passed two
parameters, Sender and Msg. Sender
will be the component itself and
Msg will be the DDE macro passed
as a TStrings object.

Unfortunately, the component
does absolutely no parsing of the
DDE macro that comes through
from the client. We get exactly
what was sent without any change
and can do with it what we like. To
test the general idea, just put a
simple statement in the event
handler that displays the DDE
macro in a message box.

A Custom File Association
With this test code in place, let’s
set up a file association for the
application. For this test the exten-
sion .DC will be used for our
application files, and a file with this
extension will be assumed to
contain simple text. From the File
Types page of the Explorer options
dialog we saw before, choose New
Type... and then fill in the dialog.
Figure 3 shows an example with a
custom icon for the file type, a
description, and an indication
that .DC files contain plain text
information.

Set the checkboxes at the
bottom of the dialog as you like.
In my case I have specified that
Quick View will be available on
the context menu for one of these
files (Quick View can show the
content of a text file, after all). I
have also made sure that the file

extension will be displayed, even
when Explorer is set to hide exten-
sions of known file types (the
default setting).

The New... button can now be
used to add new verbs (or actions
or commands, depending which
piece of Microsoft terminology you
want to use). When you press the
button, the dialog starts life with
only two fields plus an unchecked
checkbox (see Figure 4).

The Action: field is where you
specify the verb you want added to
the file’s Explorer context menu
(and also available to ShellExecute
and ShellExecuteEx). You can enter
the menu item’s caption here,
including ampersand characters
as you would in a Delphi menu
item’s Caption property, but
beware: if you deploy your applica-
tion to other countries, you may
need to cater for translating these
strings accordingly.

Because of this, Microsoft set up
a number of canonical verbs. If you
enter the name of one of these
verbs, the context menu item
caption will be automatically set
up by Windows, no matter what
country the application runs in.
The canonical verbs include open,
print, explore, find, openas and
properties. Most of these are
self-explanatory except
openas, which corresponds
to the Open With... menu
item.

We should use the open
and print canonical verbs
to answer the question. In
both cases, browse to find
the compiled version of the
application and check the
Use DDE checkbox to expand
the dialog, making it look
more like the one in Figure
2. Specify the DDE service

and topic in the appropriate fields,
along with a DDE macro of your
choice to represent the action.

For the purposes of consistency
I’ll try using the convention sug-
gested by the Windows help, as
you can see in Figure 5. However,
at this stage it does not matter
what you put in there, since
FileAssoc.exe only shows the
macro string in a message box.

When you have added the two
actions, make sure the open action
is set as the default with the Set
Default button, and so displays as
bold in the list (like Word’s open
action in Figure 1). This means that
when someone double-clicks your
file, or selects it and presses Enter,
the file will be opened (or the open
verb will be executed, which will
amount to the same thing by the
time we have finished).

Does DDE Work?
And now to test the program.
Create a text file in any directory,
then change its extension from
.TXT to .DC. Next, right-click the
file in Explorer and note that the
option for Quick View is visible
along with our two custom verbs
(see Figure 6), but beware of a

procedure
TForm1.SystemExecuteMacro(
Sender: TObject; Msg: TStrings);

begin
ShowMessage(Msg.Text)

end;

➤ Listing 1: Showing which
macros your DDE clients
execute.

➤ Figure 4: Preparing to set up a
new context menu verb.

➤ Figure 5: A custom
context menu verb.

32 The Delphi Magazine Issue 66

possible problem when choosing
them.

There is a flaw in the implemen-
tation of TDdeServerConv in that it
does not distinguish between
runtime and design-time. The
upshot of this is that the design-
time instance of the component
that is sitting on your form or data
module in the Delphi IDE is quite
likely to take part in the conversa-
tion from Windows Explorer. This
means that your application possi-
bly won’t even be executed
(instead, Delphi will be brought to
the foreground). You won’t get
very far like this, so if you get the
problem you must close the offend-
ing designer. Select the relevant
module and choose File | Close
(remember you can get any closed
project unit back with Ctrl+F12,
and any form and unit back with
Shift+F12).

Now you can test the new verbs.
Figure 7 shows the message box I
get when double-clicking my test
file, or right-clicking and pressing
Enter. As you can see, the %1 place-
holder has been replaced by the
fully qualified file name.

Implementing
The Application
To be able to support useful
macros we need an application
that does something, so our
very simplistic application needs
something of a makeover. The
questioner referred to an MDI
application, so that’s what we will
use. Rather than go through all the
details of what gets added to the

project, I’ll give an over-
view. The finished
FileAssoc.dpr on the disk
has an MDI form with a
menu and toolbar both of
whose functionality are
implemented through a
number of actions.

The application revolves
around opening text files
(with .DC extensions) and
the MDI child form has a rich edit
control on to display the text file
content. The main form File menu
has options for opening a file, print-
ing the current file, closing the cur-
rent file and exiting. These options
will all be supported by corre-
sponding DDE commands and so
Explorer will ultimately be able to
invoke their functionality.

Distinguishing Macros
The next job is to enhance the DDE
macro code to try and understand
what the program is being asked to
do. Parsing strings into under-
standable chunks is not something
I’ve had a need to do before, so
bear with me. My approach may
not be the most appropriate or
optimal. In fact, maybe I should
have read up on the subject in past
issues of The Delphi Magazine
before embarking on implement-
ing the code. A quick search on The
Delphi Magazine Collection 2000
CD for the strings parser and
parsing yielded many past articles.

The code in the FileAssoc.dpr
project tries to mimic what Word
does with its DDE commands.
Whilst I pointed out that the DDE

macro format as laid out in Figure 1
was just a convention, I have
decided to follow the convention.
Supported commands must be
placed in square brackets and a
macro can contain any number of
such commands. Each command
consists of a command name fol-
lowed by a pair of parentheses.
These can either contain nothing,
or a file name surrounded by
double quote characters. This
could be extended in a more
ambitious version of the
application to support other
parameters.

In order to interpret a given
macro string, the OnExecuteMacro
event handler first passes the
TStrings object it gets to another
routine called MassageCmds which
massages it into a more usable
form.

Recall that the TStrings object
seems to get an unparsed single
string. This means that even if mul-
tiple commands are passed in from
Explorer, they will all be passed in
as the first string in the TStrings
object because each command is
specified in the same string with-
out carriage returns. MassageCmds,

➤ Figure 6: Custom context
menu verbs at last.

➤ Figure 7: The DDE macro
being passed through to the
server.

//Turn string containing possibly many commands in square brackets into multiple
//strings, each containing one command, without square brackets
procedure MassageCmds(Cmds: TStrings);
var
S: String;
OpenCmd, CloseCmd: Integer;

begin
S := Trim(Cmds.Text);
Cmds.Clear;
while Length(S) > 0 do begin
OpenCmd := Pos('[', S);
CloseCmd := Pos(']', S);
if (OpenCmd < CloseCmd) and (OpenCmd >= 1) then begin
Cmds.Add(Trim(Copy(S, OpenCmd+1, CloseCmd-OpenCmd-1)));
Delete(S, OpenCmd, CloseCmd-OpenCmd+1);
S := Trim(S)

end else
Break

end;
end;

➤ Listing 2: MassageCmds places
each DDE command on a
separate line.

February 2001 The Delphi Magazine 33

which is shown in Listing 2, takes a
TStrings object and searches for
strings surrounded by square
brackets. Each one found is added
as a separate string stripped of its
square brackets. So all the passed
DDE commands are placed on
separate lines.

With a more manageable collec-
tion of DDE commands, the next
task is to identify each individual
command we support and respond
to it if it arrives (with its parameter,
if it has one). Listing 3 shows the
code that does the job. An enumer-
ated type lists a token (identifier)
for each command (along with an
error value of ctNone) and an array
holds the textual version of each
DDE command as it will be sent
from a DDE client.

The GetCommandAndParameter
function takes a DDE command
string as input and has two var
parameters for output, one for the
command token, and one for any

parameter passed in brackets. The
command name is deemed to be
anything to the left of the open
parenthesis, and is passed to a
helper routine StrToCommand to
translate between the textual name
and a command token. The param-
eter is taken as anything between
the brackets.

The OnExecuteMacro handler now
has to call MassageCmds to tidy up
the TStrings object, and then call
GetCommandAndParameter once for
each string in the TStrings object.
Once it has the command token it
uses a case statement to decide
how to proceed (see Listing 4).

I should mention that the
code in the actOpen action
will only invoke the file
open dialog (dlgOpenFile) if
its FileName property is
blank. Since the code in
Listing 4 sets FileName to
the file that needs to be
opened, no dialog will be
displayed when the DDE
command is executed.

I should perhaps also
mention that the printing

option does not really print the
file. Instead it produces a message
box saying that feature is not
implemented.

Testing The Macros
Now we can test this properly. The
open verb from Explorer should
successfully open the file into a
new MDI child window now (as
shown in Figure 8). However, for
the print verb, I recommend going
back to the options in Explorer.
Since the application supports
several DDE commands, we can
tailor the behaviour to different
scenarios, like Word does.

If the DDE server is running and a
file needs printing, it can be
loaded, printed and closed. If the
server is not running, the file can
be loaded into the newly executed
program, printed, and then the
server can be terminated. You can
get this behaviour by using the
DDE commands available as
shown in Figure 9. Notice that open,

type
TCommandType = (ctNone, ctOpen, ctPrint, ctClose, ctExit);

var
Commands: array[TCommandType] of String = ('', 'Open',
'Print', 'Close', 'Exit');

//Return a TCommandType value corresponding to a specified
// command string
function StrToCommand(const Cmd: String): TCommandType;
var
Idx: TCommandType;

begin
for Idx := Succ(Low(TCommandType)) to High(TCommandType) do
if CompareText(Cmd, Commands[Idx]) = 0 then begin
Result := Idx;
Exit

end;
Result := ctNone;
MessageDlg(Format('Unknown DDE command "%s"', [Cmd]),
mtError, [mbCancel], 0)

end;
//For a given command string, return the command
//type and specified filename, if present

function GetCommandAndParameter(CmdText: String; var Command:
TCommandType; var Parameter: String): Boolean;

var
OpenParens, CloseParens: Integer;

begin
Result := True;
OpenParens := Pos('(', CmdText);
CloseParens := Pos(')', CmdText);
if (OpenParens < CloseParens) and
(OpenParens > 1) then begin
Command :=
StrToCommand(Trim(Copy(CmdText, 1, OpenParens-1)));

if Command = ctNone then
Result:= False

else begin
Parameter := Copy(CmdText, OpenParens+1,
CloseParens-OpenParens-1);

Parameter := Trim(StringReplace(Parameter, '"', '',
[rfReplaceAll]));

end
end

end;

➤ Listing 3: Identifying the
supported DDE commands. procedure TMainForm.SystemExecuteMacro(Sender: TObject; Msg: TStrings);

var
I: Integer;
Cmd: TCommandType;
Parameter: String;

begin
//Here is where we parse the DDE Message (or macro) and act on its commands
MassageCmds(Msg);
for I := 0 to Msg.Count - 1 do
if GetCommandAndParameter(Msg[I], Cmd, Parameter) then begin
case Cmd of
ctOpen:
begin
dlgOpenFile.FileName := Parameter;
actOpen.Execute

end;
ctPrint: actPrint.Execute;
ctClose: actClose.Execute;
ctExit: actExit.Execute

end
end

end;

➤ Listing 4: Acting on the DDE
commands.

➤ Figure 8: A file opened in the
DDE server.

34 The Delphi Magazine Issue 66

print and close are used if the
server is already running, but open,
printand exitare used otherwise.

Testing Verbs
Programmatically
As well as testing from Windows
Explorer, we can test that the verbs
are accessible through the Shell
programming interface (the rou-
tines in the ShellAPI import unit).
Both ShellExecute and Shell-
ExecuteEx allow you to specify a
verb to apply to the file (where nil
means the default open verb).
ShellExecute has an lpOperation
parameter and ShellExecuteEx has
a field in the record that gets
passed to it called lpVerb. Listing 5
shows some simple code that tests
the print verb against a test .DC
file. Both APIs worked well in my
testing.

Custom File
Associations And Setup
Now we are at a point where the file
association works just fine and the
DDE commands are successfully

passed to the program and
acted upon by it. The final
challenge is to get the file
association set up program-
matically, so we do not
have to rely on the user to
do it through Explorer as
we did.

The details regarding file
associations and their
storage in the Windows
registry are given in articles
by Dave Jewell in Issues 36
and 37, so I won’t go into the
subject here. You can also find
information in the Platform SDK
documentation on the Microsoft
Developer Network Library CD or
available through Microsoft’s
website. The path through the doc-
umentation goes: User Interface
services, Windows Shell, Shell Pro-
grammer’s Guide, Shell Basics,
Extending The Shell, Extending
Context Menus.

In order to set up file associa-
tions and associated verbs you can
use the two routines shown in

Listing 6 (from the project
MakeFileAssoc.dpr). MakeAssoc
sets up the basic file association. It
takes a file extension (which must
include the full stop prefix) and a
file class. The file class is a custom
identifier used in the registry to
hold information about the file
association, for example the file
class for .DC files could be DC_File.

The file extension is used as the
name of a registry key under
HKEY_CLASSES_ROOT which specifies
the file class. The file class is then
used as the name of another regis-
try key, which has all the com-
mand information stored below it.

Other parameters to MakeAssoc
include the file description and a
reference to the icon that should
be used for these files. This icon
reference is a string that contains
an executable file followed by a
comma and a zero-based number

procedure TForm1.Button1Click(Sender: TObject);
begin
ShellExecute(Handle, 'print', 'c:\Test\Test file.dc', nil, nil, SW_SHOWNORMAL)

end;
procedure TForm1.Button2Click(Sender: TObject);
var
SEI: SHELLEXECUTEINFO;

begin
FillChar(SEI, SizeOf(SEI), 0);
SEI.cbSize := SizeOf(SEI);
SEI.fMask := SEE_MASK_FLAG_DDEWAIT;
SEI.Wnd := Handle;
SEI.lpVerb := 'print';
SEI.lpFile := 'c:\Test\Test file.dc';
SEI.nShow := SW_SHOWNORMAL;
ShellExecuteEx(@SEI);

end;

➤ Figure 9: Setting up a
custom print verb.

uses
ComObj, ShlObj;

procedure MakeAssoc(const FileExt, FileClass, Description,
DefaultIcon: String; AlwaysShowExt, QuickView: Boolean);

begin
if (Length(FileExt) = 0) or (FileExt[1] <> '.') then
raise Exception.Create('Invalid file extension');

CreateRegKey(FileExt, '', FileClass);
CreateRegKey(FileClass, '', Description);
if DefaultIcon <> '' then
CreateRegKey(FileClass + '\DefaultIcon', '',
DefaultIcon);

if AlwaysShowExt then
CreateRegKey(FileClass, 'AlwaysShowExt', '');

if QuickView then
CreateRegKey(FileClass + '\QuickView', '', '*');

SHChangeNotify(SHCNE_ASSOCCHANGED, SHCNF_IDLIST, nil, nil);
end;
procedure MakeAssocVerb(const FileExt, Verb, VerbCaption,
VerbCommand: String; UseDDE: Boolean; const Service, Topic,
Macro, MacroNotRunning: String);

var
FileClass: String;

begin
if (Length(FileExt) = 0) or (FileExt[1] <> '.') then
raise Exception.Create('Invalid file extension');

FileClass := GetRegStringValue(FileExt, '');
if FileClass = '' then
raise Exception.Create('File extension not registered');

CreateRegKey(FileClass + '\shell\' + Verb, '',
VerbCaption);

CreateRegKey(FileClass + '\shell\' + Verb + '\command', '',
VerbCommand);
if UseDDE then begin
CreateRegKey(FileClass + '\shell\' + Verb + '\ddeexec',
'', Macro);

CreateRegKey(FileClass + '\shell\' + Verb +
'\ddeexec\Application', '', Service);

CreateRegKey(FileClass + '\shell\' + Verb +
'\ddeexec\Topic', '', Topic);

if MacroNotRunning <> '' then
CreateRegKey(FileClass + '\shell\' + Verb +
'\ddeexec\ifexec', '', MacroNotRunning);

end;
SHChangeNotify(SHCNE_ASSOCCHANGED, SHCNF_IDLIST, nil, nil);

end;

➤ Listing 5: Testing the verbs
programmatically.

➤ Listing 6: Setting up file
associations.

February 2001 The Delphi Magazine 35

procedure TForm1.Button1Click(Sender: TObject);
begin
MakeAssoc('.DC', 'DC_File', 'Delphi Clinic File',
'D:\FileAssoc\FileAssoc.exe,0', True, True);

MakeAssocVerb('.DC', 'open', '',
'"D:\FileAssoc\FileAssoc.exe" %1', True, 'FileAssoc',
'System', '[open("%1")]', '');

MakeAssocVerb('.DC', 'print', '',
'"D:\FileAssoc\FileAssoc.exe" %1', True, 'FileAssoc',
'System',
'[open("%1")][print()][close()]',
'[open("%1")][print()][exit()]');

end;

➤ Listing 7: Setting up our file association.

that indicates which icon in the executable to use. Two
Boolean parameters are also expected that specify
whether the file extension should always be displayed
and whether the Quick View context menu should be
available.

MakeAssocVerb is used to set up individual verbs for
the file type. It takes the file extension for the verb, the
verb name and caption (which should be blank to indi-
cate either a canonical verb or one whose menu item
caption matches the verb name). The command for the
verb is then passed, followed by a Boolean parameter
that dictates whether DDE will be used. Assuming this
parameter is True, you can then specify the DDE
service, topic and macro along with the macro to use if
the server is not running (if any).

Some code that sets up the file association described
in this article is shown in Listing 7.

Summary
After all this hard work, we now have knowledge of how
to add DDE server capabilities into your application to
support custom verbs, displayed as custom context
menu items in Windows Explorer. We also now know
how to programmatically set up a custom file associa-
tion in the Windows registry that defines such custom
verbs, along with their associated DDE commands.
And all of this without a sniff of COM!

Brian Long is a freelance trainer and problem solver
specialising in Delphi and C++Builder work. Visit
www.blong.com or email him on brian@blong.com

	How Does DDE Work?
	File Associations And DDE
	Making A DDE Server
	A Custom File Association
	Does DDE Work?
	Implementing The Application
	Distinguishing Macros
	Testing The Macros
	Testing Verbs Programmatically
	Custom File Associations And Setup
	Summary

